Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 18(1): 2257348, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37724547

RESUMEN

Photosynthetic organisms biosynthesize various carotenoids, a group of light-absorbing isoprenoid pigments that have key functions in photosynthesis, photoprotection, and phototaxis. Microalgae, in particular, contain diverse carotenoids and carotenoid biosynthetic pathways as a consequence of the various endosymbiotic events in their evolutionary history. Carotenoids such as astaxanthin, diadinoxanthin, and fucoxanthin are unique to algae. In microalgae, carotenoids are concentrated in the eyespot, a pigmented organelle that is important for phototaxis. A wide range of microalgae, including chlorophytes, euglenophytes, ochrophytes, and haptophytes, have an eyespot. In the chlorophyte Chlamydomonas reinhardtii, carotenoid layers in the eyespot reflect light to amplify the photosignal and shield photoreceptors from light, thereby enabling precise phototaxis. Our recent research revealed that, in contrast to the ß-carotene-rich eyespot of C. reinhardtii, the euglenophyte Euglena gracilis relies on zeaxanthin for stable eyespot formation and phototaxis. In this review, we highlight recent advancements in the study of eyespot carotenoids and phototaxis in these microalgae, placing special emphasis on the diversity of carotenoid-dependent visual systems among microalgae.


Asunto(s)
Carotenoides , Microalgas , Fototaxis , Terpenos , beta Caroteno
2.
Biosci Biotechnol Biochem ; 87(5): 491-500, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869792

RESUMEN

Light-independent functions of carotenoids in photosynthetic organisms are poorly understood. Here, we investigated the growth properties of microalga, Euglena gracilis, under altered light and temperature using norflurazon-treated carotenoid-deficient cells and genetically modified strains, including nonphotosynthetic SM-ZK and colorless cl4. Norflurazon treatment decreased carotenoid and chlorophyll contents, causing cell bleaching. SM-ZK strain had lower carotenoid content than wild-type (WT) strain, and it was below the detectable level in the cl4 strain. Norflurazon treatment decreased phytoene synthase EgCrtB levels, although EgcrtB was transcriptionally induced. Carotenoid deficiency in norflurazon-treated cells and the cl4 strain caused similar extents of delayed growth under light and dark conditions at 25 °C, indicating that carotenoids promote growth in darkness. Both WT and SM-ZK strains exhibited similar growth rates. Dark conditions at 20 °C enhanced the growth delay of norflurazon-treated cells and the cl4 strain. These results indicate that carotenoids impart environmental stress tolerance to E. gracilis in light-dependent and light-independent manners.


Asunto(s)
Euglena gracilis , Euglena , Luz , Oscuridad , Clorofila , Carotenoides
3.
Front Plant Sci ; 12: 786208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925426

RESUMEN

Carotenoids are photosynthetic pigments and hydrophobic antioxidants that are necessary for the survival of photosynthetic organisms, including the microalga Euglena gracilis. In the present study, we identified an uncharacterized gene encoding the E. gracilis ß-carotene synthetic enzyme lycopene cyclase (EgLCY) and discovered a relationship between EgLCY-mediated carotenoid synthesis and the reactive oxygen species (ROS) scavenging system ascorbate-glutathione cycle. The EgLCY cDNA sequence was obtained via homology searching E. gracilis transcriptome data. An enzyme assay using Escherichia coli demonstrated that EgLCY converts lycopene to ß-carotene. E. gracilis treated with EgLCY double-stranded RNA (dsRNA) produced colorless cells with hypertrophic appearance, inhibited growth, and marked decrease in carotenoid and chlorophyll content, suggesting that EgLCY is essential for the synthesis of ß-carotene and downstream carotenoids, which are abundant and physiologically functional. In EgLCY dsRNA-treated cells, the ascorbate-glutathione cycle, composed of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR), was unusually modulated; APX and GR activities significantly decreased, whereas DHAR and MDAR activities increased. Ascorbate content was significantly increased and glutathione content significantly decreased in EgLCY dsRNA-treated cells and was correlated with their recycling enzyme activities. Fluorescent imaging demonstrated that EgLCY dsRNA-treated cells accumulated higher levels of H2O2 compared to wild-type cells. Taken together, this study revealed that EgLCY-mediated synthesis of ß-carotene and downstream carotenoid species upregulates APX activity and increases glutathione pool size for H2O2 scavenging. Our study suggests a possible relationship between carotenoid synthesis and the ascorbate-glutathione cycle for ROS scavenging in E. gracilis.

4.
Plants (Basel) ; 10(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34685814

RESUMEN

Cell division of unicellular microalgae is a fascinating process of proliferation, at which whole organelles are regenerated and distributed to two new lives. We performed dynamic live cell imaging of Euglena gracilis using optical microscopy to elucidate the mechanisms involved in the regulation of the eyespot and flagellum during cell division and distribution of the organelles into the two daughter cells. Single cells of the wild type (WT) and colorless SM-ZK cells were confined in a microfluidic device, and the appearance of the eyespot (stigma) and emergent flagellum was tracked in sequential video-recorded images obtained by automatic cell tracking and focusing. We examined 12 SM-ZK and 10 WT cells and deduced that the eyespot diminished in size and disappeared at an early stage of cell division and remained undetected for 26-97 min (62 min on average, 22 min in deviation). Subsequently, two small eyespots appeared and were distributed into the two daughter cells. Additionally, the emergent flagellum gradually shortened to zero-length, and two flagella emerged from the anterior ends of the daughter cells. Our observation revealed that the eyespot and flagellum of E. gracilis are degraded once in the cell division, and the carotenoids in the eyespot are also decomposed. Subsequently, the two eyespots/flagella are regenerated for distribution into daughter cells. As a logical conclusion, the two daughter cells generated from a single cell division possess the equivalent organelles and each E. gracilis cell has eternal or non-finite life span. The two newly regenerated eyespot and flagellum grow at different rates and mature at different timings in the two daughter cells, resulting in diverse cell characteristics in E. gracilis.

5.
Plants (Basel) ; 10(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34371614

RESUMEN

Gravitaxis is one of the most important issues in the growth of microalgae in the water column; it determines how easily cells receive sunlight with a comfortable intensity that is below the damaging threshold. We quantitatively investigated and analyzed the gravitaxis and cell multiplication of Euglena gracilis using vertically placed microchambers containing a single cell. A temporal change in gravitaxis and cell multiplication was observed after transferring the cells to fresh culture medium for 9 days. We performed 29 individual experiments with 2.5 mm × 2.5 mm × 0.1 mm square microchambers and found that the cells showed positive, negative, and moderate gravitaxis in 8, 7, and 14 cases, respectively, after transferring to fresh culture medium. A common trend was observed for the temporal change in gravitaxis for the eight initially positive gravitaxis cases. The cells with initially positive gravitaxis showed a higher rate of cell multiplication than those with initially negative gravitaxis. We also discussed the gravitaxis mechanism of E. gracilis from the observed trend of gravitaxis change and swimming traces. In addition, bioconvection in a larger and thicker chamber was investigated at a millimeter scale and visualized.

6.
Plant Sci ; 298: 110564, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32771165

RESUMEN

Euglena gracilis exhibits photomovements in response to various light stimuli, such as phototactic and photophobic responses. Our recent study revealed that carotenoids in the eyespot apparatus are required for triggering phototaxis in this alga. However, the role of chloroplasts in eyespot formation is not understood. Here, we isolated carotenoid-less (cl) strains of E. gracilis from cells silenced gene expression of phytoene synthase (EgcrtB). Unlike WT, the culture colors of cl1, cl3, and the non-photosynthetic mutant SM-ZK were orange, while that of cl4 was white. Electron microscope observations showed that SM-ZK, cl1, and cl3 had no developed chloroplast and formed a normal eyespot apparatus, similar to that of WT, but this was not the case for cl4. Carotenoids detected in WT were diadinoxanthin, neoxanthin, and ß-carotene. However, the most abundant species of SM-ZK, cl1, and cl3 was zeaxanthin, and there was no diadinoxanthin or neoxanthin. Photomovement analysis showed that SM-ZK, cl1, and cl3 exhibited negative phototactic and photophobic responses, similar to those of WT, whereas cl4 lacked negative phototaxis. Taken together, the formation of the eyespot apparatus required for phototaxis is independent of chloroplast development in E. gracilis, suggesting that this property is different from other photosynthetic flagellates.


Asunto(s)
Carotenoides/metabolismo , Cloroplastos/metabolismo , Euglena gracilis/fisiología , Fototaxis
7.
J Photochem Photobiol B ; 209: 111950, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32682285

RESUMEN

Carotenoids are essential components of photosynthetic organisms including land plants, algae, cyanobacteria, and photosynthetic bacteria. Although the light-mediated regulation of carotenoid biosynthesis, including the light/dark cycle as well as the dependence of carotenoid biosynthesis-related gene translation on light wavelength, has been investigated in land plants, these aspects have not been studied in microalgae. Here, we investigated carotenoid biosynthesis in Euglena gracilis and found that zeaxanthin accumulates in the dark. The major carotenoid species in E. gracilis, namely ß-carotene, neoxanthin, diadinoxanthin and diatoxanthin, accumulated corresponding to the duration of light irradiation under the light/dark cycle, although the translation of carotenoid biosynthesis genes hardly changed. Irradiation with either blue or red-light (3 µmol photons m-2 s-1) caused a 1.3-fold increase in ß-carotene content compared with the dark control. Blue-light irradiation (300 µmol photons m-2 s-1) caused an increase in the cellular content of both zeaxanthin and all trans-diatoxanthin, and this increase was proportional to blue-light intensity. In addition, pre-irradiation with blue-light of 3 or 30 µmol photons m-2 s-1 enhanced the photosynthetic activity and tolerance to high-light stress. These findings suggest that the accumulation of ß-carotene is regulated by the intensity of light, which may contribute to the acclimation of E. gracilis to the light environment in day night conditions.


Asunto(s)
Clorofila/metabolismo , Euglena gracilis/efectos de la radiación , beta Caroteno/biosíntesis , Aclimatación/efectos de la radiación , Euglena gracilis/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Xantófilas/metabolismo , Zeaxantinas/metabolismo , beta Caroteno/genética
8.
Plant Cell Physiol ; 61(2): 276-282, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593237

RESUMEN

For carotenogenesis, two biosynthetic pathways from phytoene to lycopene are known. Most bacteria and fungi require only phytoene desaturase (PDS, CrtI), whereas land plants require four enzymes: PDS (CrtP), ζ-carotene desaturase (ZDS, CrtQ), ζ-carotene isomerase (Z-ISO) and cis-carotene isomerase (CrtISO, CrtH). The gene encoding Z-ISO has been functionally identified in only two species, Arabidopsis thaliana and Zea mays, and has been little studied in other organisms. In this study, we found that the deduced amino acid sequences of Arthrospira Z-ISO and Euglena Z-ISO have 58% and 62% identity, respectively, with functional Z-ISO from Arabidopsis. We studied the function of Z-ISO genes from the cyanobacterium Arthrospira platensis and eukaryotic microalga Euglena gracilis. The Z-ISO genes of Arthrospira and Euglena were transformed into Escherichia coli strains that produced mainly 9,15,9'-tri-cis-ζ-carotene in darkness. In the resulting E. coli transformants cultured under darkness, 9,9'-di-cis-ζ-carotene was accumulated predominantly as Z-ISO in Arabidopsis. This indicates that the Z-ISO genes were involved in the isomerization of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene in darkness. This is the first functional analysis of Z-ISO as a ζ-carotene isomerase in cyanobacteria and eukaryotic microalgae. Green sulfur bacteria and Chloracidobacterium also use CrtP, CrtQ and CrtH for lycopene synthesis as cyanobacteria, but their genomes did not comprise Z-ISO genes. Consequently, Z-ISO is needed in oxygenic phototrophs, whereas it is not found in anoxygenic species.


Asunto(s)
Carotenoides/metabolismo , Euglena/metabolismo , Oxígeno/metabolismo , Spirulina/metabolismo , cis-trans-Isomerasas/metabolismo , Acidobacteria/enzimología , Acidobacteria/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis , Bacterias/enzimología , Bacterias/genética , Vías Biosintéticas/genética , Clonación Molecular , Escherichia coli/genética , Euglena/enzimología , Euglena/genética , Filogenia , Análisis de Secuencia de Proteína , Spirulina/enzimología , Spirulina/genética , Zea mays/embriología , Zea mays/genética , cis-trans-Isomerasas/clasificación , cis-trans-Isomerasas/genética , zeta Caroteno/metabolismo
9.
Plant J ; 101(5): 1091-1102, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31630463

RESUMEN

Carotenoids are the most universal and most widespread pigments in nature. They have played pivotal roles in the evolution of photosensing mechanisms in microbes and of vision in animals. Several groups of phytoflagellates developed a photoreceptive organelle called the eyespot apparatus (EA) consisting of two separable components: the eyespot, a cluster of carotenoid-rich globules that acts as a reflector device, and actual photoreceptors for photobehaviors. Unlike other algal eyespots, the eyespot of Euglenophyta lacks reflective properties and is generally considered to act as a shading device for the photoreceptor (paraflagellar body, PFB) for major photomovements. However, the function of the eyespot of Euglenophyta has not yet been fully proven. Here, we report that the blocking carotenoid biosynthesis in Euglena gracilis by suppressing the phytoene synthase gene (crtB) caused a defect in eyespot function resulting in a loss of phototaxis. Raman spectroscopy and transmission electron microscopy suggested that EgcrtB-suppressed cells formed eyespot globules but had a defect in the accumulation of carotenoids in those packets. Motion analysis revealed the loss of phototaxis in EgcrtB-suppressed cells: a defect in the initiation of turning movements immediately after a change in light direction, rather than a defect in the termination of cell turning at the appropriate position due to a loss of the shading effect on the PFB. This study revealed that carotenoids are essential for light perception by the EA for the initiation of phototactic movement by E. gracilis, suggesting one possible photosensory role of carotenoids in the EA for the phototaxis.


Asunto(s)
Carotenoides/metabolismo , Euglena gracilis/fisiología , Fototaxis/efectos de la radiación , Euglena gracilis/efectos de la radiación , Euglena gracilis/ultraestructura , Luz , Microscopía Electrónica de Transmisión , Orgánulos/metabolismo , Orgánulos/ultraestructura
10.
Plant Sci ; 278: 80-87, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30471732

RESUMEN

Some carotenoids are found in the Euglena gracilis, including ß-carotene, diadinoxanthin, diatoxanthins, and neoxanthin as the major species; however, the molecular mechanism underlying carotenoid biosynthesis in E. gracilis is not well understood. To clarify the pathway and regulation of carotenoid biosynthesis in this alga, we functionally characterized the cytochrome P450 (CYP)-type carotene hydroxylase gene EgCYP97H1. Heterologous in vivo enzyme assay in E. coli indicated that EgCYP97H1 hydroxylated ß-carotene to ß-cryptoxanthin. E. gracilis cells suppressing EgCYP97H1 resulted in marked growth inhibition and reductions in total carotenoid and chlorophyll contents. Analysis of carotenoid composition revealed that suppression of EgCYP97H1 resulted in higher level of ß-carotene, suggesting that EgCYP97H1 is physiologically essential for carotenoid biosynthesis and thus normal cell growth. To our knowledge, this is the first time EgCYP97H1 has been suggested to be ß-carotene monohydroxylase, but not ß-carotene dihydroxylase. Moreover, during light adaptation of dark-grown E. gracilis, transcript levels of the carotenoid biosynthetic genes (EgCYP97H1, geranylgeranyl pyrophosphate synthase EgcrtE, and phytoene synthase EgcrtB) remained virtually unchanged. In contrast, carotenoid accumulation in E. gracilis grown under the same conditions was inhibited by treatment with a translational inhibitor but not a transcriptional inhibitor, indicating that photo-responsive carotenoid biosynthesis is regulated post-transcriptionally in this alga.


Asunto(s)
Carotenoides/biosíntesis , Euglena gracilis/metabolismo , Oxigenasas de Función Mixta/fisiología , Proteínas de Plantas/fisiología , Vías Biosintéticas , Proliferación Celular/genética , Escherichia coli/genética , Euglena gracilis/enzimología , Euglena gracilis/efectos de la radiación , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Interferencia de ARN , ARN Mensajero/metabolismo
11.
Plant Cell Physiol ; 60(2): 274-284, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30346581

RESUMEN

Carotenoids participate in photosynthesis and photoprotection in oxygenic phototrophs. Euglena gracilis, a eukaryotic phytoflagellate, synthesizes several carotenoids: ß-carotene, neoxanthin, diadinoxanthin and diatoxanthin. Temperature is one of the most striking external stimuli altering carotenoid production. In the present study, to elucidate the regulation of carotenoid synthesis of E. gracilis in response to environmental stimuli, we functionally identified phytoene desaturase genes (crtP1 and crtP2) and the ζ-carotene desaturase gene (crtQ) of this alga and analyzed expression of those genes and the composition of major carotenoids in cells grown under cold (20�C) and high-intensity light (HL; 240 �mol photon m-2 s-1) conditions. 20�C-HL treatment increased the transcriptional level of the phytoene synthase gene (crtB), and crtP1 and crtP2, whose products catalyze the early steps of carotenoid biosynthesis in this alga. Cultivation at 20�C under illumination at 55 �mol photon m-2 s-1 (low-intensity light; LL) decreased the cell concentration, Chl and total major carotenoid content by 61, 75 and 50%, respectively, relative to control (25�C-LL) cells. When grown at 20�C-HL, the cells showed a greater decrease in cell concentration and photosynthetic pigment contents than those in 20�C-LL. ß-Carotene, neoxanthin and diadinoxanthin contents were decreased by more than half in 20�C-LL and 20�C-HL treatments. On the other hand, when subjected to 20�C-LL and 20�C-HL, the cells retained a diatoxanthin content comparable with control cells. Our findings suggested that diatoxanthin plays crucial roles in the acclimation to cold and intense light condition. To the best of our knowledge, this is the first report on a photosynthetic organism possessing dual crtP genes.


Asunto(s)
Carotenoides/metabolismo , Euglena gracilis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/metabolismo , Proteínas Protozoarias/metabolismo , Frío , Euglena gracilis/enzimología , Euglena gracilis/genética , Euglena gracilis/fisiología , Genes de Plantas , Oxidorreductasas/genética , Filogenia , Proteínas Protozoarias/genética , Alineación de Secuencia , Estrés Fisiológico
12.
BMC Plant Biol ; 17(1): 125, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716091

RESUMEN

BACKGROUND: Photosynthetic organisms utilize carotenoids for photoprotection as well as light harvesting. Our previous study revealed that high-intensity light increases the expression of the gene for phytoene synthase (EgcrtB) in Euglena gracilis (a unicellular phytoflagellate), the encoded enzyme catalyzes the first committed step of the carotenoid biosynthesis pathway. To examine carotenoid synthesis of E. gracilis in response to light stress, we analyzed carotenoid species and content in cells grown under various light intensities. In addition, we investigated the effect of suppressing EgcrtB with RNA interference (RNAi) on growth and carotenoid content. RESULTS: After cultivation for 7 days under continuous light at 920 µmol m-2 s-1, ß-carotene, diadinoxanthin (Ddx), and diatoxanthin (Dtx) content in cells was significantly increased compared with standard light intensity (55 µmol m-2 s-1). The high-intensity light (920 µmol m-2 s-1) increased the pool size of diadinoxanthin cycle pigments (i.e., Ddx + Dtx) by 1.2-fold and the Dtx/Ddx ratio from 0.05 (control) to 0.09. In contrast, the higher-intensity light treatment caused a 58% decrease in chlorophyll (a + b) content and diminished the number of thylakoid membranes in chloroplasts by approximately half compared with control cells, suggesting that the high-intensity light-induced accumulation of carotenoids is associated with an increase in both the number and size of lipid globules in chloroplasts and the cytoplasm. Transient suppression of EgcrtB in this alga by RNAi resulted in significant decreases in cell number, chlorophyll, and total major carotenoid content by 82, 82 and 86%, respectively, relative to non-electroporated cells. Furthermore, suppression of EgcrtB decreased the number of chloroplasts and thylakoid membranes and increased the Dtx/Ddx ratio by 1.6-fold under continuous illumination even at the standard light intensity, indicating that blocking carotenoid synthesis increased the susceptibility of cells to light stress. CONCLUSIONS: Our results indicate that suppression of EgcrtB causes a significant decrease in carotenoid and chlorophyll content in E. gracilis accompanied by changes in intracellular structures, suggesting that Dtx (de-epoxidized form of diadinoxanthin cycle pigments) contributes to photoprotection of this alga during the long-term acclimation to light-induced stress.


Asunto(s)
Carotenoides/metabolismo , Euglena gracilis/enzimología , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Clorofila/metabolismo , Clorofila A , Euglena gracilis/genética , Euglena gracilis/efectos de la radiación , Euglena gracilis/ultraestructura , Silenciador del Gen , Genes Protozoarios , Luz
13.
BMC Plant Biol ; 16: 4, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26733341

RESUMEN

BACKGROUND: Euglena gracilis, a unicellular phytoflagellate within Euglenida, has attracted much attention as a potential feedstock for renewable energy production. In outdoor open-pond cultivation for biofuel production, excess direct sunlight can inhibit photosynthesis in this alga and decrease its productivity. Carotenoids play important roles in light harvesting during photosynthesis and offer photoprotection for certain non-photosynthetic and photosynthetic organisms including cyanobacteria, algae, and higher plants. Although, Euglenida contains ß-carotene and xanthophylls (such as zeaxanthin, diatoxanthin, diadinoxanthin and 9'-cis neoxanthin), the pathway of carotenoid biosynthesis has not been elucidated. RESULTS: To clarify the carotenoid biosynthetic pathway in E. gracilis, we searched for the putative E. gracilis geranylgeranyl pyrophosphate (GGPP) synthase gene (crtE) and phytoene synthase gene (crtB) by tblastn searches from RNA-seq data and obtained their cDNAs. Complementation experiments in Escherichia coli with carotenoid biosynthetic genes of Pantoea ananatis showed that E. gracilis crtE (EgcrtE) and EgcrtB cDNAs encode GGPP synthase and phytoene synthase, respectively. Phylogenetic analyses indicated that the predicted proteins of EgcrtE and EgcrtB belong to a clade distinct from a group of GGPP synthase and phytoene synthase proteins, respectively, of algae and higher plants. In addition, we investigated the effects of light stress on the expression of crtE and crtB in E. gracilis. Continuous illumination at 460 or 920 µmol m(-2) s(-1) at 25 °C decreased the E. gracilis cell concentration by 28-40 % and 13-91 %, respectively, relative to the control light intensity (55 µmol m(-2) s(-1)). When grown under continuous light at 920 µmol m(-2) s(-1), the algal cells turned reddish-orange and showed a 1.3-fold increase in the crtB expression. In contrast, EgcrtE expression was not significantly affected by the light-stress treatments examined. CONCLUSIONS: We identified genes encoding CrtE and CrtB in E. gracilis and found that their protein products catalyze the early steps of carotenoid biosynthesis. Further, we found that the response of the carotenoid biosynthetic pathway to light stress in E. gracilis is controlled, at least in part, by the level of crtB transcription. This is the first functional analysis of crtE and crtB in Euglena.


Asunto(s)
Carotenoides/biosíntesis , Euglena gracilis/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Secuencia de Aminoácidos , Clonación Molecular , Euglena gracilis/enzimología , Euglena gracilis/metabolismo , Genes de Plantas , Luz , Datos de Secuencia Molecular , Alineación de Secuencia
14.
Mol Genet Genomics ; 285(6): 461-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21512732

RESUMEN

Many plants require circadian clock and light information for the photoperiodic control of flowering. In Arabidopsis, a long-day plant (LDP), flowering is triggered by the circadian clock-controlled expression of CONSTANS (CO) and light stabilization of the CO protein to induce FT (FLOWERING LOCUS T). In rice, a short-day plant (SDP), the CO ortholog Heading date 1 (Hd1) regulates FT ortholog Hd3a, but regulation of Hd3a by Hd1 differs from that in Arabidopsis. Here, we report that phytochrome B (phyB)-mediated suppression of Hd3a is a primary cause of long-day suppression of flowering in rice, based on the three complementary discoveries. First, overexpression of Hd1 causes a delay in flowering under SD conditions and this effect requires phyB, suggesting that light modulates Hd1 control of Hd3a transcription. Second, a single extension of day length decreases Hd3a expression proportionately with the length of daylight. Third, Hd1 protein levels in Hd1-overexpressing plants are not altered in the presence of light. These results also suggest that phyB-mediated suppression of Hd3a expression is a component of the molecular mechanism for critical day length in rice.


Asunto(s)
Ritmo Circadiano , Oryza/fisiología , Fotoperiodo , Fitocromo B/fisiología , Proteínas de Plantas/fisiología , Flores , Regulación de la Expresión Génica de las Plantas
16.
Physiol Plant ; 137(3): 289-97, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19744160

RESUMEN

In rice (Oryza sativa) seedlings, continuous white-light irradiation inhibited the growth of seminal roots but promoted the growth of crown roots. In this study, we examined the mechanisms of photoinhibition of seminal root growth. Photoinhibition occurred in the absence of nitrogen but increased with increasing nitrogen concentrations. In the presence of nitrogen, photoinhibition was correlated with coiling of the root tips. The seminal roots were most photosensitive 48-72 h after germination during the 7-day period after germination. White-light irradiation for at least 6 h was required for photoinhibition, and the Bunsen-Roscoe law of reciprocity was not observed. Experiments with phytochrome mutants showed that far-red light was perceived exclusively by phyA, red light was perceived by both phyA and phyB, and phyC had little or no role in growth inhibition or coiling of the seminal roots. These results also suggest that other blue-light photoreceptors are involved in growth inhibition of the seminal roots. Fluence-response curve analyses showed that phyA and phyB control very low-fluence response and low-fluence response, respectively, in the seminal roots. This was essentially the same as the growth inhibition previously observed at the late stage of coleoptile development (80 h after germination). The photoperceptive site for the root growth inhibition appeared to be the roots themselves. All three phytochrome species of rice were detected immunochemically in roots.


Asunto(s)
Oryza/efectos de la radiación , Fitocromo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Medios de Cultivo , Luz , Mutación , Nitrógeno/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/genética , Plantones/genética
17.
Proc Natl Acad Sci U S A ; 106(34): 14705-10, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19706555

RESUMEN

Phytochromes are believed to be solely responsible for red and far-red light perception, but this has never been definitively tested. To directly address this hypothesis, a phytochrome triple mutant (phyAphyBphyC) was generated in rice (Oryza sativa L. cv. Nipponbare) and its responses to red and far-red light were monitored. Since rice only has three phytochrome genes (PHYA, PHYB and PHYC), this mutant is completely lacking any phytochrome. Rice seedlings grown in the dark develop long coleoptiles while undergoing regular circumnutation. The phytochrome triple mutants also show this characteristic skotomorphogenesis, even under continuous red or far-red light. The morphology of the triple mutant seedlings grown under red or far-red light appears completely the same as etiolated seedlings, and they show no expression of the light-induced genes. This is direct evidence demonstrating that phytochromes are the sole photoreceptors for perceiving red and far-red light, at least during rice seedling establishment. Furthermore, the shape of the triple mutant plants was dramatically altered. Most remarkably, triple mutants extend their internodes even during the vegetative growth stage, which is a time during which wild-type rice plants never elongate their internodes. The triple mutants also flowered very early under long day conditions and set very few seeds due to incomplete male sterility. These data indicate that phytochromes play an important role in maximizing photosynthetic abilities during the vegetative growth stage in rice.


Asunto(s)
Luz , Oryza/efectos de la radiación , Fotorreceptores de Plantas/fisiología , Fitocromo/fisiología , Análisis por Conglomerados , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/efectos de la radiación , Flores/genética , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Oryza/crecimiento & desarrollo , Fenotipo , Fotorreceptores de Plantas/genética , Fitocromo/genética , Fitocromo A/genética , Fitocromo A/fisiología , Fitocromo B/genética , Fitocromo B/fisiología , Infertilidad Vegetal/genética , Infertilidad Vegetal/efectos de la radiación , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Factores de Tiempo
18.
Genes Genet Syst ; 84(2): 179-84, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19556711

RESUMEN

A short exposure to light during relative night (night break; NB) delays flowering in the short day plant rice. NB acts by downregulating Heading date 3a (Hd3a) expression. Because phytochrome B mutants do not respond to NB and their flowering time is not affected even under NB conditions, phyB is required for the suppression of Hd3a expression. The effect of NB is quantitatively controlled by light quality and by either light intensity or duration. However, the molecular mechanisms that regulate these interactions are poorly understood. Here, we examine the roles of phytochromes in the regulation of Hd3a transcription under NB conditions using monochromatic red, far-red and blue light. Red and blue light downregulated Hd3a expression, but far-red light NB did not. The effect of red light NB on Hd3a is dependent on photon fluence and is restored by subsequent far-red light irradiation. Our results suggest that quantitative effect of light on flowering in rice NB is mediated by the regulation of Hd3a transcription by phyB.


Asunto(s)
Flores/genética , Oryza/genética , Fitocromo B/fisiología , Proteínas de Plantas/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luz , Mutación , Oryza/crecimiento & desarrollo , Fotoperiodo , Fitocromo B/genética , Transcripción Genética
19.
Mol Plant ; 1(1): 84-102, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20031917

RESUMEN

The phytochrome (phy)A and phyB photoreceptors mediate three photobiological response modes in plants; whereas phyA can mediate the very-low-fluence response (VLFR), the high-irradiance response (HIR) and, to some extent, the low fluence response (LFR), phyB and other type II phytochromes only mediate the LFR. To investigate to what level a rice phyA can complement for Arabidopsis phyA or phyB function and to evaluate the role of the serine residues in the first 20 amino acids of the N-terminus of phyA, we examined VLFR, LFR, and HIR responses in phyB and phyAphyB mutant plants transformed with rice PHYA cDNA or a mutant rice PHYA cDNA in which the first 10 serine residues were mutated to alanines (phyA SA). Utilizing mutants without endogenous phyB allowed the evaluation of red-light-derived responses sensed by the rice phyA. In summary, the WT rice phyA could complement VLFR and LFR responses such as inhibition of hypocotyl elongation under pulses of FR or continuous R light, induction of flowering and leaf expansion, whereas the phyA SA was more specific for HIR responses (e.g. inhibition of hypocotyl elongation and anthocyanin accumulation under continuous far-red light). As the N-terminal serines can no longer be phosphorylated in the phyA SA mutant, this suggests a role for phosphorylation discriminating between the different phyA-dependent responses. The efficacy of the rice phyA expressed in Arabidopsis was dependent upon the developmental age of the plants analyzed and on the physiological response, suggesting a stage-dependent downstream modulation of phytochrome signaling.


Asunto(s)
Arabidopsis/genética , Luz , Oryza/genética , Fitocromo A/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Cotiledón/genética , Cotiledón/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Hipocótilo/efectos de la radiación , Datos de Secuencia Molecular , Mutación , Fosforilación , Fitocromo A/química , Fitocromo A/metabolismo , Fitocromo A/efectos de la radiación , Fitocromo B/química , Fitocromo B/genética , Fitocromo B/efectos de la radiación , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
Photochem Photobiol ; 83(1): 131-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17029495

RESUMEN

Phytochrome has been shown to be the major photoreceptor involved in the photo-inhibition of coleoptile growth in Japonica-type rice (Oryza sativa L.). We have characterized this typical photomorphogenetic response of rice using mutants deficient in phytochrome A (phyA) and phytochrome B (phyB) and with respect to age-dependency and action spectra. Seedlings were irradiated with a pulse of light 40 h or 80 h after germination (i.e. at an early or late developmental stage) and the final coleoptile length of these seedlings was determined. A saturating pulse of red light (R) had a stronger effect when it was given in the late stage than in the early stage. It was found that the photoinhibition is mediated by both the phyA and the phyB in the late stage but predominantly by phyB in the early stage. Consistent with many other reported responses, the photo-inhibition in the phyA mutant, which was observed in the early and late developmental stages and is thought to be mediated mainly by phyB, occurred in the low-fluence range (10(1)-10(3) micromol m(-2)) of R and was far-red-light (FR)-reversible; the photo-inhibition in the phyB mutant, which was observed in the late developmental stage and is thought to be mediated mainly by phyA, occurred in the very-low-fluence range (10(-2)-10(0) micromol m(-2)) and was FR-irreversible. The action spectra (350-800 nm at 50 nm intervals) obtained at the two developmental stages using phyA and phyB mutants indicated that both the phyB-mediated low-fluence response and the phyA-mediated very-low-fluence response have a major peak at 650 nm and a minor peak at 400 nm.


Asunto(s)
Cotiledón/efectos de la radiación , Luz , Oryza , Fitocromo/metabolismo , Plantones/efectos de la radiación , Cotiledón/crecimiento & desarrollo , Germinación/genética , Germinación/fisiología , Germinación/efectos de la radiación , Mutación/genética , Fotones , Células Fotorreceptoras/metabolismo , Fitocromo/genética , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantones/genética , Plantones/fisiología , Espectrometría de Fluorescencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...